4-2 Triangle Congruence by SSS and SAS Notes

1) What angle is included between $\overline{E D}$ and $\overline{E F}$? \qquad
2) Which sides include $\angle \mathrm{G}$? \qquad
3) Which sides include $\angle G D F$? \qquad
4) What is a non-included side for $\angle E$? \qquad

5) What are the two non-included angles for $\overline{E D}$ and $\overline{D F}$? \qquad

Postulate 4-1 Side-Side-Side (SSS) Postulate

Postulate
If the three sides of one triangle are congruent to the three sides of another triangle, then the two triangles are congruent.

If...
$\overline{A B} \cong \overline{D E}, \overline{B C} \cong \overline{E F}, \overline{A C} \cong \overline{D F}$

Then ...
$\triangle A B C \cong \triangle D E F$

Reflexive Property!

State if the two triangles are congruent. If they are, state how you know.
1)

2)

4)

6)

e note

Postulate 4-2 Side-Angle-Side (SAS) Postulate

Postulate

If two sides and the included angle of one triangle are congruent to two sides and the included angle of another triangle, then the two triangles are congruent.

If...
$\overline{A B} \cong \overline{D E}, \angle A \cong \angle D$,
$\overline{A C} \cong \overline{D F}$

Then...
$\triangle A B C \cong \triangle D E F$

Vertical Angle Theorem!

State if the two triangles are congruent. If they are, state how you know.

State if the two triangles are congruent. If they are, state how you know.
1)

2)

3)

4)

5)

6)

7)

8)

9)

10)

11)

12)

Common Ways to Prove Angles Congruent

\#1.

\#2.

\#3.

Given: $\overline{A D}$ bisects $\angle B A C$
$\angle B A D \cong \angle D A C$ \qquad

Given: $m \angle B=25^{\circ}, m \angle A=25^{\circ}$
$m \angle B=m \angle A$ \qquad
$\angle B \cong \angle A$ \qquad

Given: $\overline{A B} \| \overline{C D}$
$\angle 1 \cong \angle 2$

Given: $\overline{X W} \| \overline{Y Z}$
$\angle 1 \cong \angle 2$ \qquad

Common Ways to Prove Segments Congruent

\#7.

$\overline{P R} \cong \overline{P R}$ \qquad

Given: W is the midpoint of $\overline{Q S}$

$$
\overline{Q W} \cong \overline{W S}
$$

\qquad
\#

Given: $J K=15, P Q=15$

$$
\begin{aligned}
& J K=P Q \\
& \overline{J K} \cong \overline{P Q} .
\end{aligned}
$$

\qquad
\qquad

Given: $\overline{C D}$ bisects $\overline{A B}$

$$
\overline{A D} \cong \overline{D B}
$$

4-3 Triangle Congruence by ASA and AAS Notes

Postulate 4-3 Angle-Side-Angle (ASA) Postulate

Postulate

If two angles and the included side of one triangle are congruent to two angles and the included side of another triangle, then the two triangles are congruent.

If...
$\angle A \cong \angle D, \overline{A C} \cong \overline{D F}$,
$\angle C \cong \angle F$

Then...
$\triangle A B C \cong \triangle D E F$

Darallel Lines!

Write a congruence statement for the two triangles that could be proven congruent by ASA.

Theorem 4-2 Angle-Angle-Side (AAS) Theorem

Theorem

If two angles and a
nonincluded side of one
triangle are congruent to two angles and the corresponding nonincluded side of another triangle, then the triangles are congruent.
If . . .

$$
\begin{aligned}
& \angle A \cong \angle D, \angle B \cong \angle E, \\
& \overline{A C} \cong \overline{D F}
\end{aligned}
$$

$$
A C \cong D F
$$

Then...
$\triangle A B C \cong \triangle D E F$

Are the following pairs of triangles congruent? If so, state the theorem or postulate you would use to prove them congruent.
1)

2)

3)

4)

Are the following pairs of triangles congruent?
If so, state the theorem or postulate you would use to prove them congruent.

2)

3)

6)

7)

8)

9)

State the third congruence that must be given to prove that $\triangle A B C \cong \triangle X Y Z$, using the indicated postulate or theorem.
4. Given: $\angle A \cong \angle X$

$$
\angle B \simeq \angle Y
$$

Method: AAS Congruence Theorem
5. Given: $\angle A \cong \angle X$

$$
\overline{A B} \simeq \overline{X Y}
$$

Method: ASA Congruence
Postulate

Is it possible to prove that the triangles are congruent? If so, state the postulate or theorem you would use. Explain your reasoning.
7.

8.

9.

